Pediatric Concussion and Overuse Injuries

Mark E. Gormley, Jr., M.D.
Gillette Children’s Specialty Healthcare
St. Paul, Minnesota
Thanks to Hank Chambers, MD
Pediatric Orthopedic Surgeon
San Diego, CA
Organized Youth Sports

• Over 30 Million Pediatric and Adolescent Athletes in the US
• 4.5 Million injuries annually
• 1.4 Million serious (hospitalization, surgery, school absence)
• 35% of injuries in young athletes are related to sports participation
• Increase in Female athletes
• Younger age of competition
Concussion debate evolving

- Football deaths
 - 1919 – 53
 - 1968 – 36
 - Now – 5/yr
- NFL $765 million settlement
- Recognition
- Treatment
- ?Prevention
- Have athletes outpaced evolution?
- Has protective and improved equipment increased risk
- Debate currently dominated by treatment (? Influence of $$$)
- Treatment evolving too
NY HS football player dies after mild head injury 10/11

- High school lineman hit hard and falls to ground
- Rolls over and sits up on own
- Complains of severe headache
- Collapses when he stands
- Dies in ambulance on the way to ED
Concussion

- Immediate and transient impairment of neurologic function caused by trauma to the brain
- “dinged”
- “bell rung”
- Not usually seen on neuro-imaging (CT or MRI)
MN Youth Sports Concussion Law

• 9/1/11 MN concussion law
• All youth sports coaches must take and pass CDC online concussion course
• Any player with concussion symptoms must leave activity and not return until cleared by a “medical professional”
• No enforcement or punitive measures
• Focuses on recognition and treatment, not prevention
The long-term effects of multiple concussions may be severe and not immediately evident in the short-term.
Chronic Traumatic Encephalopathy (CTE)

- Accumulation of scarring proteins in the brain that leads to early cognitive deterioration, even if no symptoms existed in early adulthood.
- Related to repetitive concussions.
- Dave Duerson, ex-NFL player who committed suicide due to cognitive changes, CTE on autopsy.
- Derek Boogaard, NHL player with CTE on autopsy after drug overdose.
- NFL settled with players for $765 million.
Tau accumulation in repetitive concussions
(A–C) Whole mount 50-μm-thick coronal sections immunostained for tau (AT8) from case 1 (A), case 2 (B), case 3 (C) (counterstained with cresyl violet) showing extremely dense deposition of tau protein in the amygdala with increasing severity from left to right. (D–F) Microscopically, there is a moderate density of NFTs and astrocytic tangles in case 1 (D), the density is increased in case 2 (E), and extremely marked in case 3 (F), original magnification x350.

Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy following Repetitive Head Injury

CTE

• Tauopathy
• Dementia pugulistica (punch drunk)
• Preferential involvement of superficial cortical layers
• Irregular patchy distribution in frontal and temporal cortices
• Little beta-amyloid deposits common in Alzheimer’s
38 soccer players (ave. age: 30.8)
- Asked about “heading” frequency
- Assessed diffusion tensor imaging (DTI) MRI
- Assessed cognitive function
- Higher rate of heading showed DTI white matter pathology and worse cognitive testing
Most frequent symptoms

- headaches 40%
- dizziness 14%
- memory problems 13%
- weakness 10%
- foggy
- crying
Mild TBI symptoms

- school problems
- poor abstract, organizational, judgement skills
- depression
- headaches
- tics
- anxiety
- neck pain
- dizziness
- diplopia
- photophobia
Diagnosing mild TBI

- reports of symptoms c/w mild TBI
- PET scan (CT, MRI, usually of little help)
- evaluations by therapist (OT, speech, psychology)
- fMRI maybe helpful
- ImPACT
Clinical Protocol for ImPACT

- Baseline
- Concussion
- ImPACT testing within 24-72 hours
- Repeat testing in 5-10 days
- Repeat testing as needed
- Use normative data when baseline testing not available
Post-Concussion Symptom Scale

<table>
<thead>
<tr>
<th>Symptom</th>
<th>None</th>
<th>Minor</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Vomiting</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Balance Problems</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Dizziness</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Trouble Falling Asleep</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sleeping More Than Usual</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sleeping Less Than Usual</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Drowsiness</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sensitivity to Light</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sensitivity to Noise</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Irritability</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sadness</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Nervousness</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Feeling More Emotional</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Numbness or Tingling</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Feeling Slowed Down</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Feeling Mentally “Foggy”</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Difficulty Concentrating</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Difficulty Remembering</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Visual Problems</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
- Initially, the subject is presented with a screen that displays 9 common symbols.
- Then the symbols disappear from the top grid.
Significant difference between groups out to at least 8 days post-injury.

N=410

*Lower score indicates poorer performance

Injured Brain Cells

• Vulnerable to repeat injuries in days and weeks post-concussion
• Repeat injuries can cause extensive neuronal loss
• Should initially rest like skeletal injuries
“Cognitive Rest”

- Limit academic and physical activities – no reading, video games, vigorous activities – TV OK
- Symptoms may increase with increased activities
- Cognitive deficits may persist after other symptoms resolve
- Gradually increase activities as symptoms improve – staged return
“Cognitive Rest”

• Should not keep out of school for more than 1 week if symptom free.
• If symptoms severe, may need to rest longer
• If symptoms severe more than 4 weeks, may need to “work through” it
• Return to activities should be less than 2 weeks if symptoms resolve quickly
Return to Physical Activity Plan

- **No physical activity** until __________ this includes no practice/games, no gym, no recess, no exercise, & no strenuous activity.

- Start **Stage 1 activity** beginning __________. Your target heart rate is ___________.
- Start **Stage 2 activity** beginning __________. Your target heart rate is ___________.
- Start **Stage 3 activity** beginning __________. Your target heart rate is ___________.
- Start **Stage 4 activity** beginning __________. Your target heart rate is ___________.
- Start **Stage 5 - full contact practice/play** beginning __________. Your target heart rate is ___________.
- **Repeat ImPACT testing** __________.
Cognitive rest
Moser, et al
J of Ped, 2012

• Retrospective review
• 49 athletes post-concussion
• All prescribed 1 week of rest
• Assessed if time between onset of concussion and start of rest period effects outcomes
• All groups improved even if rest started 1 month post concussion
Cognitive rest

• Retrospectively looked at 95 student athletes
• Divided into 5 groups according to immediate post-concussive activity level
• Strong correlation between high-intensity level and delayed neurocognitive recovery
• Moderate activity groups did best
Strict Rest Beneficial?
Thomas, et al, Pediatrics ‘15

- Randomized controlled trial
- 88 patients 11-22 y/o seen w/in 24hrs of concussion
- Treatment group got 5 days of strict rest
- Control group got 1-2 days of rest
- Measured symptoms, balance, neurocognitive function

- Symptoms better in control group
- No difference in balance or neurocognitive function
Cervico-vestibular therapy
Schneider, et al

- Blinded randomized control trial
- 31 athletes with prolonged symptoms of dizziness and headache or neck pain
- 1 group treated with vestibular and sensorimotor therapy (treatment group)
- 1 group treated with rest with gradual resumption of activities (control group)
- Blinded physician determined return to sport
- 1 of 14 (7%) of control group and 11 of 15 (74%) of treatment group returned to sport by 8 wks
Athletes with chronic symptoms
GyroStim chair
Resumption of activities per Silverberg, et al J Head Trauma Rehabil 2013

• Review article
• Bed rest shouldn’t be longer than 3 days
• Begin pre-injury activities as tolerated
• Delaying contact activities reduces overlap
• Risks from activities that cause symptoms unknown, severe sx may indicate harm
• Resume activities sub-sx level at first
• Work through sx if longer than 1 month
High School Football long-term risks
Savica, et al, 4/12

• High school football players in Rochester MN 1946-1956
• High school male band, glee, or choir control
• Looked for rates of dementia, Parkinson’s, and ALS
• No difference in incidence
• Increased rates in both groups for Parkinson’s but expected among farmers
Summary

• Rest for 1 week helps prevent overlap injuries
• Should begin to return to moderate activities at sub-symptom level as tolerated
• No activities or high intensity activities may be harmful
• May need to work through activity induced symptoms if present longer than 1 month
• Vestibular therapy may help with long-term sx
Summary

• Long term consequences of concussion still not fully understood.
• Long-term problems may only be significant with multiple concussions over many years, i.e. professional athletes
• Second impact syndrome rare but consequences severe
• Err on the side of caution
Overuse Injuries: Pediatric Athlete

- Cartilage
 - Articular
 - Growth Plates (Physis)
 - Tendon Attachment to bone (Apophysis)
- Susceptible to injury in children / adolescents
- Repetitive loads can alter the shape and anatomy of bones and joints
Pediatric Sports Injuries

• Traumatic Injuries
 • Less Common
 • ? Size, speed, strength, intensity

• Overuse Injuries
 • Common
Growth Plate

Cartilage is an area of relative weakness.
Traumatic Injuries: Pediatric Athlete

- Growth plates and apophyses are areas of relative weakness
- Ligaments and tendons are frequently stronger than the growth plates around joints
- Fractures are more common than severe sprains around joints, especially the ankle, wrist, and knee, and lower back
- High index of suspicion for physeal injuries
Overuse Injuries

- Repetitive use
- Year round sports
- Sports specific training
Organized Youth Sports

- Year round leagues/practices
- ‘Personal’ coaches/trainers
- Private camps/summer camps
- Sport specific training
Overuse Injuries: Varies by sport

- Contact Sports
 - Higher percent traumatic
 - (Soccer, basketball, etc.)
- Non-contact Sports
 - Higher percent overuse
 - (swimming, dance, etc.)
Tissue Response to Exercise

- Repetitive sub-maximal loading
- Fatigue of Tissue
- Micro-fracture or Micro-tear
- Rest

Rest >> RECOVERY
- repair, regeneration, hypertrophy, strengthening
Tissue Response to Exercise

- Repetitive sub-maximal loading
- Fatigue of Tissue
- Micro-fracture or Micro-tear

- Inadequate Rest
 - local inflammation, structural weakness, degeneration, pain, loss of motion, muscle weakness
Overuse Injuries:
Pediatric Athlete

• Rapid Growth in Children
• Can lead to joint tightness and decreased range of motion
• Inflexibility can lead to increase tension on tendon attachments to bone
• Physiologic requirements for rapid growth
Overuse Injuries: Pediatric Athlete

- Children develop at different rates
 - Strength
 - Coordination
 - Balance
Overuse Injuries: Pediatric Athlete

• Evaluation
 – Onset (before, during, after activity)
 – Training Conditions/Surfaces
 – Change in equipment/technique
 – Past Injuries
 – Last shoe purchase
 – Other Joints (JRA)
Overuse Injuries: Pediatric Athlete

- Examination
- Localize the complaint
 - Child
 - Parent
- Gait: Asymmetry, Limp
- Alignment
- Swelling
- Range of motion / flexibility
Overuse Injuries: Pediatric Athlete

- Examination
- Muscle strength
- Palpation of injury area
- Recreate the loading pattern
- Examine the child after sports activity or when symptomatic
- Vague complaints or poorly localized symptoms seen with overuse injuries
Overuse Injuries: Pediatric Athlete

• Evaluation
• Radiographs
 • Comparison Views >> helpful – x-ray both sides
 • Bone Scan
 • MRI, CT-Scans
Overuse Injuries: Pediatric Athlete

- Cartilage Injuries (apophysitis)
- Gymnast Wrist
- Little League Elbow
- Little League Shoulder
- Osgood-Schlatter Disease
- Sever’s Disease
- 5th metatarsal fx
- Spondylolysis/lithesis (pars articularis fx)
Spondylysis and Spondylolisthesis

- Superior articular facets (face postero-medially)
- Spinal canal
- Transverse process
- Pedicle
- Body
- Inferior articular facet (faces antero-laterally)

- Spondylysis
 - Break in bony ring of vertebra
 - Forward slippage

- Spondylolisthesis
 - Body of vertebra
 - Lumbar spine

© 2007 Healthcare & Affiliates. All rights reserved.
Spondy

• Spondylolysis – fracture of lumbar pars articularis
• Spondylolithesis – subluxation of lumbar vertebrae forward
• Most common in teenage athletes
• Teenagers typically don’t have chronic back pain
• Good prognosis with rest
Spondy

- **Spondylolysis**
 - usually occurs with sudden extension of lower back or repetitive stress
 - Pain most common symptom
 - Can worsen with repeat trauma
 - Heals readily with 4-6 weeks of full rest and gradual return to activity
 - Surgery rarely needed
 - Non-unions can be asymptomatic for years
Spondy

• Spondylololithesis
 – Can occur if bilateral fractures that don’t heal
 – Often chronic but asymptomatic
 – Grade I and II usual respond to conservative tx
 – Grade III and IV may need surgery if sx
 – Initially try PT, strengthening, ROM, etc.
Gymnast Wrist

- ‘Walking’ on the hand
- Repetitive compressive loads across physis

- Flattening of articular cartilage
- Widening of growth cartilage or growth plate
Gymnast Wrist

• Treatment
 – Activity Modifications / Limitations
 – Bracing / Taping - Trainer/Coach

• Referral
 – Mechanical symptoms, significant growth plate irregularities
Osgood-Schlatter Disease

- Apophysitis: Tibial Tubercle
 - Localized pain
 - Activity related
 - Males > Females
 - Swelling
 - Frequently bilateral
 - Resolves with maturity and fusion of growth center
Osgood-Schlatter Disease

- Examination:
 - tibial tubercle
 - patellar tendon
Osgood-Schlatter Disease: Treatment

• Non-operative
• Activity modification (training regimen, different position)
• Stretching
• Anti-inflammatory medications
‘Little Leaguers Shoulder’

- Overuse injury of proximal humerus
- Repetitive Torsional Stress
- History of vague shoulder pain
- Physeal injury
- Widening
- Irregularity
- Comparison views
• Throwing Arm
• Irregular Physis
• Physeal Widening

• Non-Throwing Arm
‘Little Leaguers Shoulder’

• Treatment
 – Limiting number of innings/pitchers
 – Rest
 – Therapy?
 – Switching Positions

• Referral
 – No response to rx, radiographic abnormalities
‘Little Leaguers Elbow’

• Overuse injury of distal humerus/elbow
• Repetitive Valgus Stress across elbow
• Similar patterns of injury seen in gymnastics
• Clinical Presentation
 – Pain, loss of motion, locking, mechanical symptoms, effusion
‘Little Leaguers Elbow’

• Treatment
 • Limiting number of innings/pitchers
 • Rest
 • Therapy?
 • Switching Positions

• Referral
 – No response to rx, radiographic abnormalities, mechanical symptoms
Overuse Injuries-Pediatric Athlete: Stress Fractures

- Especially older children
- Tibia
- Calcaneus
- Femur (Shaft and Neck)
- Humerus
- Metatarsal
Overuse Injuries-Pediatric Athlete: Stress Fractures

• Always consider this if long bone pain
• Athletes using hard surfaces (dancers, runners)

• Evaluation
 – Radiographs - frequently negative
 – Bone Scan, CT, MRI
Periosteal Stress Reaction
Overuse Injuries-Pediatric Athlete: Stress Fractures

• Treatment
 – Activity Modifications/Limitations

• Referral
 – If symptoms persist
Overuse Injuries: Pediatric Athlete

- **Treatment**
 - Rest or change in activity
 - Based upon degree of symptoms
 - Based upon recovery
- Often needs casting or splints for adequate rest
- Gradual return to activity
- Usually 3-4 weeks
Overuse Injuries: Pediatric Athlete

• Rest >> *Does not always mean stopping the activity completely*

• Reduction of loading at injured site
• Alternate training regimens
• Maintain fitness, flexibility, strength
Overuse Injuries: Pediatric Athlete

• Goal:
 – Allow the body's normal healing response to intervene
 – Reduce the loading to below the threshold for pain
Overuse Injuries: Pediatric Athlete

• Training Programs
 – Should incorporate scheduled rest intervals
 – Proper Equipment
 • Shoes: loose 40-50 % of shock-absorption after 250-500 miles
Overuse Injuries: Pediatric Athlete

- Treatment
 - Ice
 - decreases swelling
 - reduces pain
 - 10-20 minute sessions over 24-72 hours post activity
Overuse Injuries: Pediatric Athlete

• Treatment
• Rehabilitation – Supervised
 • Range of motion
 • Strengthening
 • Flexibility Exercises
 • Aerobic Conditioning
 • Return to sport
Preventing Overuse Injuries: Pediatric Athlete

• Avoiding Re-injury
 – Training
 – Appropriate Rest
 – Equipment Use
 – Shoes/Orthoses
 – Proper Technique
 – Cross-training
ACL Tears in Female Athletes

• Female: Male - 3 - 4 : 1

• Causes:
 – Anatomy of Knotch
 – Diameter of Ligament
 – Ligamentous laxity
 – Hormonal differences
 – Muscle weakness
Summary

• Overuse injuries common in pediatric sports
• Overtraining of growing bodies increases risks
• Prolonged similar activities increases risk
• Areas of rapid growth at highest risk (apophysis or growth cartilage)
• Rest, strengthening exercises, stretching, altering activities the best treatment
• Still need low stress reps